
Chapter 10: Constrained Optimization via Calculus

Introduction

You have learned how to solve one-variable and two-variable unconstrained
optimization problems.  We now proceed to the next level:  solving two-variable
problems in which there is a constraint on the actions of the optimizing agent.   

Another way of saying this is that there is a restriction on the values of the
endogenous variables that may be chosen.   We will introduce you to a nifty
technique that transforms the constrained problem into an unconstrained one. 
Once youÕve done this, you can apply the familiar five-step process for solving an
unconstrained problem. 

Our goal here is to teach you a recipe for solving problems, not to teach you the
mathematics behind itÑthat job we will leave to your mathematics professors.  In
economics, if you follow the recipe, you will get the right answer. 

The Example Problem

On a given evening, Wally enjoys the consumption of cigars (C) and brandy (B)
according to the utility (U) function

U = 20C - C2 +18B - 3B2 

It is possible for Wally to consume only part of a cigar (he smokes 1/2 or maybe 
.743267. . . of a cigar) or brandy (by drinking 1/3 or possibly .23784. . . of an ounce).

Our Tasks Today:
We will first suppose that there is no constraint on the amount of cigars and brandy
that Wally can choose: he can pick any amount of C and any amount of B to
maximize his utility function.  

How much of each will he consume?  WhatÕs the max U?  We can apply the
familiar five-step solution strategy for a two-variable unconstrained problem to find
out.

We will then impose a constraint on WallyÕs choices.  We will see how the
constraint is incorporated into the problem and how the solution differs from the
unconstrained problem.  We will revisit the linear/non-linear reduced form issue
and learn an important lesson about the Method of Actual Comparison versus the
Method of the Reduced Form. 
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Solving the Unconstrained Problem with Calculus

LetÕs suppose that we have set up the problem and understand the goal (maximize
utility), the endogenous variables (B and C) and the exogenous variables (the
numbers ("20", "2," etc. in the utility function).  

We are ready to FIND THE OPTIMAL SOLUTION.

Step 1: Write out the problem mathematically

max U = 20 A C - C2  +18 A B - 3 A B 2   

  C,  B

Step 2: Take the partial derivatives of the objective function. 

∂U

∂B
= 18 - 6B

∂U

∂C
= 20 - 2C

Step 3: Set the partial derivatives equal to zero and put a * superscript on the
endogenous variables (B and C) to indicate that they now represent the optimal
values of the endogenous variables:

∂U

∂C
= 20 - 2C* = 0

∂U

∂B
= 18 - 6B* = 0

Step 4: Solve for the optimal values of the endogenous variables:

C* = 10 cigars
B* = 3 ounces of brandy

Notice how easy this step is since the 2 first-order conditions (in Step 3) are
UNRELATED.

Usually, the first-order conditions will be RELATED and a series of algebra moves
will be necessary to solve for the endogenous variables. 
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Step 5:  Plug the optimal values of the endogenous variables into the objective
function in order to calculate the maximum utility:

U* = U|B=B* and C=C* = 20[10] - [10]2 + 18[3] - 3[3]2 = 127

This means that Wally enjoys a maximum utility level of 127 utils when he can
consume as many cigars and brandy as he wishes.  He cannot do any better than this.

What's Next?

From here, we would normally proceed to explore the COMPARATIVE STATICS
properties of the solutions; that is, we would investigate how C*, and B* and U*
change for given shocks.  Of course, we could use the Method of Actual Comparison
either via cumbersome calculation with pencil-and-paper or, much more easily,
with the aid of Excel's Solver.  Alternatively, we could solve
a more general version of the problem (with letters instead of numerical values for
the exogenous variables) and then apply the Method of the Reduced Form via
Calculus.  But all of that would merely repeat what we already know. 

Today, however, we will turn to a constrained version of the problem and learn a
new technique for solving it.  This will serve as our introduction to
CONSTRAINED OPTIMIZATION PROBLEMS.
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To be sure you understand where we are headed, take a look at the familiar diagram
belowÑthe next few chapters are located firmly in the CONSTRAINED
optimization section of the Economic Approach:
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The Constrained Version of the Cigar/Brandy Utility Maximization Problem

After going to the doctor for a persistent cough, Wally is given strict orders to limit
his total consumption of cigars and brandies, C+B, to 5.  In other words, the doctor
has put a constraint on WallyÕs actions.  

Obviously, WallyÕs unconstrained optimal solution violates the doctorÕs orders: B*
+ C* = 13, which is a greater than the upper limit of 5.  Given that he wants to
maximize his utility function, but also wants to obey the doctorÕs orders, how many
cigars and brandies will Wally consume this evening?  Put in other words, what is
the best Wally can do given the constraint?

The Solution Method in Words.  The trick we will show you to solve this problem
involves using the constraint ( 5 = C + B) to make an additional marginal optimization
condition.  Once you have done this, you solve the resulting system as if it were a
regular multi-variable unconstrained optimization problem.   This nifty trick was
invented in the eighteenth century by the French mathematician, Joseph Louis
Lagrange (1736-1813) (sometimes spelled "LaGrange").  The Lagrangean Method for
solving constrained optimization problems is named after him.  

Basically, the Lagrangean method requires the modification of the first step in
solving an unconstrained problem, writing out the objective function.   The
modification is this: 

¥ Write the equation for the constraint so that ZERO appears on the righthand side
(so that EXOGENOUS LIMIT - FUNCTION OF ENDOGENOUS VARIABLES = 0).

¥ Multiply the lefthand side of the constraint equation (the non-zero part) times a
NEW VARIABLE, λ (an as yet undetermined number called the Lagrangean
multiplier).

¥ Add the resulting term to the objective function. 

When you proceed to Step 2, taking the derivatives with respect to the endogenous
variables, you treat the new variable λ just like any of the endogenous variables. 
When you solve for the optimal values of the endogenous variables, you also solve
for the optimal value of  λ ,  λ*.  We will defer the economic interpretation of  λ*
until later;  for the moment, just think of it as a means toward an endÑsolving
constrained optimization problems.

Let's work through an example.
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The Lagrangean Method Applied to the Problem

Step 1: Write the problem mathematically as an unconstrained problem by utilizing
the Lagrangean

(a) Write out the constraint in the form Constraint = 0.

The constraint is 5 = C + B,1 which we rewrite 5 - C - B = 0.  We could write it C + B -
5 = 0Ñit works that way too, but to be consistent, weÕll always write it Exogenous
Limit - Function of Endogenous Variables.

(b) Multiply the lefthand side of the constraint by λ, to get 

λ¥ ( 5 - C - B)   

   

Note that if we can somehow be assured that the
constraint will hold, i.e., that C and B equal 5, then
this term is equal to zero regardless of the value of λ.

(c) Add the new term to the objective function to build a new, composite function:

20C - C2 +18B - 3B2 +   λ( 5 - C - B)

Strictly speaking, this expression is not utility, U,  since we have added another
term.  We have transformed the utility function into something called a Lagrangean

function, usually denoted in mathematics textbooks as a fancy-script, cursive L, L. 
We will treat the Lagrangean function just like the objective function in the
unconstrained problem.

max L  = 20C - C2 +18B - 3B2 +   λ( 5 - C - B) 
                                      B,C,λ

Step 2: Take the partial derivatives with respect to the THREE endogenous variables,
B, C, and λ.

∂L 

∂C
 = 20 - 2C - λ

∂L

∂B
 = 18 - 6B - λ

∂L

∂λ
 = 5 - B - C

¥ Notice that you now have THREE first-order conditions instead of the two
for the unconstrained problem.  
¥ Notice also that the derivative with respect to lambda simply repeats the
constraint.  This is always the case.

1Actually, the constraint is C + B < 5 rather than strict equality; but since Wally likes both
cigars and brandy at these levels of consumption, we know that he will not be maximizing utility unless
he consumes as much as he can.  Hence, we know that the constraint will hold with strict equality.
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Step 3:  Set the partial derivatives equal to zero and put stars (*) next to the
endogenous variables to identify them as the optimal values.

 20 - 2C*  - λ*
 = 0

 18 - 6B*  - λ*
 = 0

5 - B* - C*  = 0

This gives you THREE equations in THREE unknowns.

Step 4:  Solve for the optimal values of the endogenous variables.

From the first two equations, you get 20 - 2C* = 18 - 6B*.  Solving for C*, you get 1 +
3B* = C*.  Substituting for the C* in the third equation, you obtain B* + 1 + 3B* - 5 =
0.  Solving for B*, you get B* = 1.   This means that C* = 4.  Substitute either B* or C*
into one of the first two equations and you find that λ* = 12:

B*= 1
C*= 4
λ*= 12

The equations were RELATED so it took a little algebra to solve for optimal values
of the endogenous variables.

Step 5:  Evaluate the objective function (NOT the Lagrangean) at the optimal value
of the endogenous variables.

Objective function* = Ä(endogenous variables*|exogenous variables)

The objective function in our case is still utility, not the made-up, composite
Lagrangean functionÑthatÕs just a means to solving the problem.  You plug in the
optimal values of B* and C* into the original utility function to find out WallyÕs
optimal level of utility given the constraint.  

U* = 20C* - C*2 +18B* - 3B*2 = 20(4) - (4)2 + 18(1) - 3(1)2 = 79

Compared to the previous level of utility for the unconstrained problem (which
yielded a maximum utility of U* = 127), we see that following the doctorÕs orders has
cost Wally 127 - 79 = 48 utils this evening (of course, he is less likely to get lung
cancer or cirrhosis of the liver when he is 56!).

ASIDE:  Notice how the maximum value function of the Lagrangean is also 79 since
the  λ*( 5 - C* - B*) term equals zero.  It is more logically correct, however, to find U*
and to think of the Lagrangean as a MEANS that is discarded once the solution is
found.  The optimal value of the Lagrangean Multiplier, λ*, however, is not
discarded for it will prove to have a powerful use.
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BEING CAREFUL WITH THE UNITS:

We will break, for a moment, with the time honored tradition in economics of
being incredibly sloppy with units of variables.  We will painstakingly detail the
units of each variable we are considering in the cigar/brandy problem.  The pay-off
will be a much better understanding of λ*.

First, the objective function is measured in "utils." So, if C=1 and B=1, we would
have 20[1] - [1]2 + 18[1] - 3[1]2 = 34 utils.  As we said before, C is number of cigars and B
is ounces of brandy.  That means the coefficient "20" is an exogenous variable that is
measured in utils/number of cigarsÑso that when you multiplied it by C in
number of cigars, you'd get utils.  In addition, there must be a coefficient "- 1" in
front of the C2 (as in, 20C - 1C2) that is an exogenous variable measured in
utils/number of cigars2Ñso that when you multiplied it by C2, which is in number
of cigars2, you'd get utils.   Similarly, the "18" and "-3" coefficients must be
measured in utils per ounce of brandy and utils per ounce of brandy2, respectively.

Turning to the constraint, we have to point out that the exogenous "total cigar and
brandy limit," isn't measured in either number of cigars or ounces of brandy, but
something like "units of sin." Both C and B in the equation 5 - C - B = 0 have "1s" in
front of them that are exogenous variables measured in number of cigars/unit of sin
and ounces of brandy/unit of sin.  These coefficients are needed to convert C and B
into some common units (which we call "sin") that can be added together.

All of this is a prelude to the most important measurement of all, that of λ .  If the
objective function comes out in utils, then λ(5 - B - C) must also end up in utils.  We
know from above that 5 - C - B is in units of sin.  We can correctly deduce, then, that
λ must be a rate measured in utils per units of sinÑso that when 5 - C - B in units of
sin is multiplied by λ in utils/unit of sin, we get utils!

You might be thinking, "Now I know why economists never sweat the unitsÑwhat
a mess!"  Maybe, but there is an important lesson hereÑin every constrained
optimization problem that uses the Lagrangean Multiplier Method, λ  must be a rate
measured in units of the objective function per unit of the exogenous limit in the
constraint.  

In the problem above, we found that λ*=12.  The question is "12 what???"  The
answer is, 12 utils/unit of sin.  Keep that in mind when we discuss the
interpretation of λ* below.

And remember the lesson:

LESSON:  λ  must be a rate measured in units of the objective function per unit of
the exogenous limit in the constraint.  
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Comparative Statics via CalculusÑThe Method of the Reduced Form

Suppose that we were interested in how WallyÕs choices and his optimal utility
level would change if the doctor were to allow him more or less latitude in
exercising his bad habits.  In other words, we are interested in how C*, B*, and
perhaps U* change when the doctor allows him more or less cigars and brandy.

This is an application of comparative statics.  We can apply the Method of the
Reduced Form here to answer the question, but we need to make the problem a
little more general and re-solve it in order to do it.  Instead of the ÒconcreteÓ limit of
5, we substitute the exogenous variable CBL (for cigar and brandy limit).  When we
solve again for the optimal values of the endogenous variables, that new variable
CBL will appear on the righthand side, allowing us to track how the optimal values
of the endogenous variables change when the limit goes up or down.

We could make the problem even more general (with letters for the other
exogenous variables), but since we are interested in how the Cigar and Brandy Limit
affects the optimal values, we will concentrate on CBL alone.  We would, of course,
get the same answer by finding the general reduced form and then plugging in the
same specific parameter values that we are using here.

Now we repeat the steps and re-solve the problem.

Step 1:  Write the problem mathematically as an unconstrained problem by utilizing
the Lagrangean

max L = 20C - C2 +18B - 3B2 +   λ*( CBL - C - B) 
B,C,λ

Step 2: Take the partial derivatives with respect to the three endogenous variables.
∂L

∂C
 = 20 - 2C - λ

∂L

∂B
 = 18 - 6B - λ

∂L

∂λ
 = CBL - B - C

Step 3:  Set the partial derivatives equal to zero.

 20 - 2C*  - λ*
 = 0

 18 - 6B*  - λ*
 = 0

CBL - B*  - C*  = 0
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Step 4: Solve for the optimal values of the endogenous variables.

Instead of getting a number, we will get an expression which involves both
numbers and CBL, the other exogenous variable that is no longer a number.

From the first two equations, we know 1 + 3B* = C*, as before.  Substituting into the
third equation for C*, we obtain CBL - B* - 1 - 3B* = 0, or B* = 0.25CBL - 0.25. 
Plugging back into the expression for C*, we get C* = 1 + 3(0.25CBL - 0.25) = 0.25 +
0.75 CBL.  Finally, plugging the values for C* or B* into one of the first two
equations gives you λ* = 19.5 - 1.5CBL.

C* = 0.25 + 0.75CBL
B* = - 0.25 + 0.25CBL

   

These are
reduced forms.

λ* = 19.5 - 1.5CBL

Note that if you plug in CBL = 5, you recover the previous ÒconcreteÓ solution.  

Step 5: Evaluate the objective function at the optimal values of the endogenous
variables.

If we plug in the Step 4 optimal values into the expression for utility, U* = 20C* -
C*2 +18B* - 3B*2, we get (after a little algebra) 

U* = 0.25 + 19.5CBL - 0.75CBL2

This is a maximum value function (a reduced form for the objective function).

Note that if CBL = 5, then U* = 79Ñjust like before!

PEDAGOGICAL HINT:   There is much repetition hereÑthe five steps for finding
an optimal solution to an optimization problem via calculus are the same whether
the problem is unconstrained or constrained.  Once the problem is set up and Step 1
is taken care of, the mechanics of calculus are identical.  Use this well-established
PATTERN to create a "comfort zone" for your mind.  No matter the optimization
problem, you should expect to see the same things (first-order conditions, similar
algebra tricks, etc.) popping up repeatedly.

Now that we have reduced forms in terms of CBL (the exogenous variable we were
interested in analyzing), we are ready to perform our comparative statics analysis
via the Method of the Reduced Form.
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How do C*and B* change when CBL changes? 

Although we could calculate and re-calculate C* and B* for different values of CBL
(this is the Method of Actual Comparison) and create a nice table that showed how
C* and B* varied with CBL, we can use the Reduced Forms from the previous page
to quickly reveal the change in C* and B* given an infinitesimal change in CBL. 
This way of doing comparative statics is called the Method of the Reduced Form.

We simply take the derivative of C*=0.25 + 0.75CBL with respect to CBL and find

dC*
dCBL

 = .75

This tells us that C* is linear and increasing in CBL. 

Since it is imperative that you learn how to interpret derivatives of reduced forms,
we offer you the following opportunity to understand what is going on here:

Q: Finish the statement below:

The derivative above shows that C* is linear and increasing in CBL because:

When you are done, see the last page for an answer to this question.

When the doctor allows Wally one more combination of cigars and brandies, he
chooses to consume an additional three-fourths of a cigar. 

Of course, you know that he will consume one-quarter ounce more of brandy from

B* = - 0.25 + 0.25CBL

dB*
dCBL

 = .25

This tells us that B* is linear and increasing in CBL.  Similarly, if the doctor allowed
Wally one LESS unit in total, he would cut back by 3/4 of a cigar and 1/4 of an ounce
of brandy.
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How does U* change when CBL changes?

To find this out, we take the derivative of U*= 0.25 + 19.5CBL - 0.75CBL2 with respect
to CBL:

dU*
dCBL

 = 19.5 - 1.5CBL

This derivative of the maximum value function tells you how much maximum
utility goes up when the doctorÕs limit goes up.  

Note that U* is increasing in CBL but at a decreasing rate.  U* is non-linear in CBL.  

When CBL is 5, then dU*/dCBL = 19.5 - 1.5(5) = 12.  This means that if the doctor
allowed Wally a little bit (as in an infinitesimally small bit) more than 5 total cigars
and brandies, his utility would go up by 12 times the increase in the limit, CBL.  

"What if the doctor allows Wally a one-unit increase from 5 to 6 total cigars and
brandiesÑwould U* increase 12-fold to 91 (from 79)?"

Wow! What a great question!  The answer is, "NO because U* is non-linear in CBL."
There are TWO crucial points here:

¥ If the reduced form is LINEAR, then the Method of Actual Comparison and
the Method of the Reduced Form yield equivalent results.  It doesn't matter if
the change in the exogenous variable is infinitesimally small (as used by the
Method of the Reduced Form) or arbitrarily large (as used by the Method of
Actual Comparison) since the equation is a STRAIGHT LINE.  The slope is
the same whether you figure the rise for a run of infinitesimally small size,
.01, 1, or any size whatsoever.

¥ If the reduced form is NON-LINEAR, the two methods give different
answers since the equation is NOT A STRAIGHT LINE.  The slope will be
different depending on the size of the change considered in the exogenous
variable.

"So, if the reduced form is non-linear, which methodÑactual comparison or
reduced formÑis better?"

THE RIGHT METHOD TO USE DEPENDS ON THE QUESTION THAT
IS ASKED.  
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Comparative statics via the Method of the Reduced Form is good for infinitesimally
small changes in the exogenous variables; while the Method of Actual Comparison
is better for arbitrarily large changes.

The Method of the Reduced Form is better when you want to get a quick, fast
answer to how the optimal value will change if there's a small shock.

The Method of Actual Comparison is better when you are exploring the
effects of a given sized shock.  If your boss wants to know how profits will
respond to change in price from $6/unit to $7/unit, use the Method of Actual
Comparison.

Let's how see how this discussion applies to the question of which method is more
appropriate when considering a change in CBL from 5 to 6 by looking at a graph of
the situation:

   

5
   

6

   

90.25

   

91

   

U*

   

CBL

   

79

   

The actual increase in U* when CBL increasees from 5 to 6 
   

is 90.25 - 79 = 11.25.  The derivative of U* with respect to 
   

CBL is 12.  Mathematically, this means that the slope of 
   

the function at CBL = 5 is 12.   Think of this as a rate:  if 
   

CBL were to increase by a little bit, U* would increase at 
   

12 times the increase in CBL.  For example, if CBL 
   

increased by 1/12, U* would increase by almost exactly 1. 
But note that as soon as you go any distance above 1, the  
   

rate of change (that is, the slope) decreases:  the function
bends down.  So the actual change in U*  when CBL increases
from 5 to 6 is going to be less than the slope evaluated at
CBL=5 predicts.  

The point is this: the derivative of a reduced form tells you how much the function
changes when an exogenous variable changes by an INFINITESIMALLY SMALL
amount.  If you have a non-linear function and you want to know the effect of a
LARGE change in the exogenous variable (say, from 5 to 6) then DO NOT USE THE
DERIVATIVE.  It is better to use the Method of Actual Comparison.  The derivative
tells you the rate of change in the immediate neighborhood of the optimal value.   

ASIDE: Most students have a deep respect for calculus.  They think calculus is
always more powerful and better than "mere numbers."  This is WRONG.  Calculus
is extremely powerfulÑif you know how to use it, you can quickly establish the
direction and magnitude of the change in an optimal value of an endogenous
variable for a given shock.  But if the question calls for an estimate of a particular,
non-infinitesimally sized shock, then calculus may lead you astray.  Pay attention to
the question at hand.
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Understanding Lambda*  

Look again at the expression for dU*/dCBL (on page 11): it should look familiar.  If
you go back to the expressions for the optimal values of the endogenous variables
(on page 9), you will see that the expression for dU*/dCBL exactly matches the
expression for λ*.   

This is no accident!  

We now have a meaning for the optimal value of lambda: it measures the
ÒtightnessÓ of the constraint in the sense of how much more the maximum value
of the objective function would be if the constraint was relaxed a little bit. 
Remember that lambda* comes in units of the optimum value function per unit of
the exogenous limit in the constraint and so is a rate of change concept.

The optimal value of the Lagrangean Multiplier is simply the
derivative of the optimum value function with respect to the
exogenous limit in the constraint.   The optimal value of lambda tells
you the rate at which the optimal value of the objective function rises
when the constraint relaxes a little bit.  In this case, it tells us how fast
WallyÕs utility would increase if the doctor increased his limit by an
infinitesimally small amount.

λ* is often known as a Òshadow priceÓ in constrained optimization
problems, the price that the agent is willing to pay to have the
constraint relaxed a little bit. 

Other Applications and Interpretations of Lambda*

¥ Suppose that a consumer is maximizing utility subject to an income constraint. 
Then the optimal value of lambda is the extra maximum utility that would be
enjoyed if the consumer had another dollar to spend.   

λ* is measured in utils/$

¥ Suppose that a firm is maximizing profits subject to a constraint on factory floor
space.  Then the optimal value of lambda is the extra maximum profit that could be
earned if the firm had one more square foot of floor space.

λ* is measured in $/sq. ft.

¥ Suppose that a firm is minimizing the costs of producing a given level of output. 
Then the optimal value of lambda is the additional (or marginal) minimum cost of
producing one more unit of output.

λ* is measured in $/unit of output
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A Final Comment on  λ*

Every solved constrained optimization problem has an optimal value of λ ; it reveals
how much the optimum value function changes when you relax the constraint.  As
such, λ  is always a rate, something per something else.  If you remember that the
units of λ* are "units of the optimum value function per unit of the exogenous
limit in the constraint," you should be able to interpret correctly any value of  λ*.

λ* is a powerful shortcut.  Often we want to know what would happen to the
optimum value function if the constraint was relaxed.  

One way to answer this question is through the Method of Actual
Comparison.  Solve the problem over and over again for different values of
the exogenous limit in the constraint, then see how the optimum value
function responds to these discrete changes in the exogenous limit.  This will
tell you what would happen to the optimum value function if the constraint
was relaxed.  

Another way is to solve the problem via calculus with the exogenous limit in
the constraint as a "letter," instead of a "concrete" number (e.g., total cigars
and brandies allowed represented as "CBL" instead of as "5").  Work your way
through the solution recipe and Step 5 will generate a optimum value
function that contains the variable "exogenous limit in the constraint" (as we
showed above, U*= 0.25 + 19.5CBL - 0.75CBL2).  Then take the derivative of
the optimum value function with respect to the exogenous limit in the
constraint (dU*/dCBL = 19.5 - 1.5CBL) and evaluate it at a given value of the
exogenous limit (dU*/dCBL = 19.5 - 1.5(5) = 12).  This will tell you what would
happen to the optimum value function if the constraint was relaxed.  

A third way is to say, "Hey, I know that λ* reveals how much the optimum
value function changes when you relax the constraint." If you know λ*, it
will tell you what would happen to the optimum value function if the
constraint was relaxed.  That's a powerful shortcut.

An Annoying Detail

It turns out that in this problem, we really need to add two other constraints: C and
B must both be constrained to be greater than or equal to 0.  Why?  Well, it just
doesnÕt make sense to allow consumption of cigars or brandy to be negative.  Such
inequality constraints are tough to deal with and usually arenÕt missed, so we wonÕt
talk about them much in this course.  (Fortunately, it is easy to get Excel to take into
account inequality constraints.) If you want to see why an inequality constraint is
needed, plug CBL = 0 into the reduced forms for C*, B*, λ*, and U* on page 9 and
think about the resulting values of C*, B* and U*.
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ANSWERS

Q: Finish the statement below:

The derivative above shows that C* is linear and increasing in CBL because:

THE DERIVATIVE DOES NOT CONTAIN CBL, HENCE, C* GRAPHED AGAINST
CBL IS A STRAIGHT LINE AND THE DERIVATIVE GRAPHED AGAINST CBL IS
A HORIZONTAL LINE.  WE SAY THAT C* IS LINEAR IN CBL.

THE DERIVATIVE IS POSITIVE (0.75) WHICH MEANS THAT THE C* IS
UPWARD SLOPING AND SO MUST BE INCREASING AS CBL INCREASES.

MORE EXPLANATION:

The reduced form for C* is

C* = 0.25 + 0.75CBL
and so the derivative is

dC*
dCBL

 = .75

   

5

   

0.25

   

4.00

   

C*

   

CBL

   

5

   

0.75

   

C* per change in CBL

   

CBL

Look at the top graphÑit shows C* as an increasing, linear functionÑno matter the
increase in CBL, C* will increase by 0.75-fold.
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